
International Journal of Theoretical Physics, Vol. 24, No. 12, 1985

Uncontrollable Computational Growth in
Theoretical Physics

R. Cuykendal l 1

Received May 29, 1985

Some new results in the theory of synchronous parallel computation indicate
there may be fundamentally unavoidable limitations to computing in certain
kinds of large computational problems arising naturally in science and engineer-
ing. These limitations are in the naturd of uncontrolled growth (discontinuous
jumps) in computation times under fixed programming schemes, and arise for
computations allowing arbitrary (uniform) inputs over F n for sufficiently large
n, where F is a finite field. Instances of such discontinuity may appear, for
example, in very-large-scale Monte Carlo simulations, such as those being
contemplated for carrying out quantum chromodynamics (QCD) computations
on lattices of substantially larger size than is now practicable. In this case, the
QCD simulation may encounter abnormally (and unexplained) long run times
on particular internally generated updates, resulting in distortion among time-
weighted runs. The mechanism of these updates is believed to satisfy our
necessary assumption of fixed encodings over uniform inputs.

1. I N T R O D U C T I O N

Conven t iona l computa t ion theory pr imari ly involves possibilit ies, not
probabil i t ies . Certainly a great many problems are known to be much easier
on average than in the worst case. It is the thesis of this paper that, on the
contrary, for certain kinds of physical processes, the densi ty of i r reducibly
(uncont ro l lab ly) complex computa t ions arising from quest ions about these
processes is very large. In a recent paper (Wolfram, 1985) it has been
suggested that such computa t iona l i rreducibil i ty occurs whenever a physical
system can act as a computer , and that computa t iona l reducibi l i ty may well
be the except ion rather than the rule. That is, most physical quest ions may

be answerable only through uncont ro l lab le amounts of computa t ion .

xCalifornia Institute of Technology/Jet Propulsion Laboratory, Pasadena, California 91109.
Present address: Department of Electrical and Computer Engineering, University of Iowa,
Iowa City, Iowa 52242.

1143
0020-7748/85/1200-1143504.50/0 ~ 1985 Plenum Publishing Corporation

1144 Cuykendall

Similarly, it has been argued (Feynman, 1982) that quantum mechanics
cannot be simulated by locally interconnected computers when size-growth
is controlled in such a way that the number of computer elements necessary
to simulate a large physical system be proportional to the space-time volume
of the physical system. Our results seem to imply that this argument should
hold for any (fixed) computable relation between the number of computer
elements and the space-time volume.

Using a source encoding result (Fine, 1975) we show that there exists
an infinite sequence of sets M. of binary functions such that each M.
contains at least one function f not in C, where C is the set of reasonably
programmable binary functions in the sense that there exists a program P
which yields an approximation f ' ~ 6(f) to f, that P run in time no longer
than ~-, and that IPI < y[K~o(f)] for all preassigned recursive % 7, and 6, y
increasing and ~ such that for some e < 1 and each binary function g e M,,
6(g) contains no more than 2 ~lgl binary functions. K+ (f) is the Kolmogorov
measure of the quantity of information contained in the function f

Next we relate lower bounds on the VLSI complexity'of approximately
computing certain uniform sets of finite binary functions f directly to their
information content Kq,(f). This suggests a hierarchy theorem in which we
show the existence of infinite sequences of finite functions f of increasing
degreee of amodularity which cannot be reasonably approximated to within
6(f) by modular (VLSI-efficient) functions. We further show that if all
sufficiently large M, contain at least one function f not in C, then every
(reasonably accurate) computation allowing arbitrary inputs over E n~-"0 is
inherently amodular. A result (Helm and Young, 197t; Constable and
Hartmanis, 1971; Meyer and Fischer, 1972) on the size of programs admit-
ting speedups provides convincing evidence that practically all large compu-
tations are amodular.

In general, one is interested in finding an efficient algorithm for solving
a problem, where the notion of efficiency may involve a variety of (perhaps
yet unknown) computing resources. Here though, we are concerned with
the single resource time. The time requirements of an algorithm are usually
expressed in terms of a single variable, the size of a problem instance, which
is intended to reflect the amount of input data needed to describe the
instance. This is intuitively appealing because one would expect the relative
difficulty of problem instances to vary roughly with their size. The size of
a problem instance is often measured in an informal way, so if time
requirements are to be compared in a precise way, care must be taken to
define instance size in a uniform manner.

The description of a problem instance provided as input to a computer
can be viewed as a single finite string of symbols, chosen from a finite fixed
alphabet. Although there are many different ways in which instances of a

Uncontrollable Computational Growth in Theoretical Physics 1145

given problem might be described, it is assumed that each problem has
associated with it a fixed encoding scheme E which maps problem instances
into the strings describing them. The input length for an instance I of a
problem ~- is defined to be the number of symbols n in the description
E(I) obtained from the encoding scheme for ~r, and it is this number n
that is used as the formal measure of instance size.

The time complexity for an algorithm, defined as the largest amount
of time needed by the algorithm to solve for each input length IE(I)I an
instance I of that length, thus depends upon the particular encoding scheme
chosen. However, the standard encoding schemes used in practice always
seem to differ at most polynomially from one another, so that any algorithm
having polynomial time complexity under one of these encodings will have
tiolynomial complexity under all the others. As it is difficult to imagine a n
encoding scheme for a naturally occurring problem that differs more than
polynomially from the standard ones, there has been general agreement as
to what constitutes a reasonable encoding scheme. Although what is meant
by reasonable cannot be completely (satisfactorily) formalized, the generally
accepted meaning includes the notions of conciseness and decodability.
The intent of conciseness is that instances of a problem should be described
with the natural brevity that would be used in actually specifying those
instances for a computer, without any unnatural padding of the input, as
such padding might expand the input length so drastically that an exponen-
tial time algorithm would be artificially converted to an algorithm with only
polynomial complexity. The intent of decodability is that, given any par-
ticular component of an arbitrary instance, a polynomial time algorithm
can be specified for decoding a description of that component from any
given encoded instance. In other words, for a problem to be considered
realistically defined (encoded), the solution which satisfies the problem
parameter values specified in each instance must itself not be so extensive
that it cannot be described with an expression having length bounded by
a polynomial function of the input length.

2. SOURCE ENCODING

The concern an information theory with only average program (code-
word) length has obscured the problem of the efficient coding of individual
message sequences. A theorem due to T. Fine (1975) demonstrates that any
code that can be realistically decoded must, for many sources, assign
incredibly long (exceeding y[K+]) programs P to some (not very many)
messages relative to the minimum possible (incompressible) codeword
length K,. This limitation seems to be fundamentally unavoidable even
under very weak assumptions concerning the definition of a running time

1146 Cuykendall

bound, the concept of a neighborhood set of a sequence, and the degree 7
to which the lerigth of a program approaches its minimal value K~,. The
concern with individual messages is formulated and treated within the
framework of algorithmic information theory, rather than with respect to
sources for which a relative frequency characterization of uncertainty is
assumed.

The ability to compress binary data in the form of a binary sequence,
for example, requires a compression (encoding) function E and a recon-
struction (decoding) function ~O. If IS [denotes the length of the data sequence
S, it is hoped that [E(S) I tends to be less than IS[at least for those sequences
in a finite message source M. The fundamental difficulty of data compression
dealt with concerns ~0 rather than E, the properties of the decoder rather
than those of the encoder. The nature of the conflict is such that for many
message sets it is practically impossible to decode some efficiently encoded
sequences (incompressible or nearly incompressible input programs) from
either probabilistic, nonprobabilistic, or unknown sources. There is a similar
conflict between the degree to which a sequence is compressed, and the
difficulty of doing so. Details of this argument are analogous to the first
problem. Furthermore, the results remain valid even when the coding
requirements are relaxed so that the decoder need reconstruct only a
reasonable approximation to the encoded sequence.

Specifically, if z(S) is the running-time bound on computational effort
of decoder (receiver-computer) ~O accepting codeword (program) P for
message S, and y[K, (S)] is the upper bound to acceptable codeword length
IPI when the shortest codeword for S has length K~(S), then for many
message sources M there exist messages S~ M such that (t) if encoder
satisfies y, then "decoder violates ~'; (2) if decoder satisfies ~', then encoder
violates y. These conclusions seem to be fundamentally unavoidable, and
remain valid even when the decoder is allowed to reconstruct only an
approximation S' in a neighborhood 6(S) of S. Compatibility of these
results with those of information theory is that detailed properties of coding
systems for individual messages, and not ensemble average properties, are
analyzed. In a sense, concepts of Kolmogorov (Kolmogorov, 1968; Chaitin,
1975) increase resolving power of information theory for looking at
individual sequences, and thus reveal obstacles to uniformly good coding
systems.

The formalization of program efficiency is effected through a measure
of information introduced by Kolmogorov (Kolmogorov, 1965). Let s denote
a finite binary string and let x denote an infinite binary sequence. The first
n bits of x are written as x ", x, [sometimes written x(n)] is the nth bit of
x and l(s) is the length of s. We also write x" to denote an arbitrary finite
string of length n.

Uncontrollable Computational Growth in Theoretical Physics 1147

Definition. A programming language q~ is a partial recursive (p.r.)
function on the finite strings,

q~:{0, 1}*-~ {0, 1}*

Definition. p is a r program for s i t t ~p(p)= s.

Intuitively, programming languages (computers) are thought of as
mappings from programs to their outputs. The value ~p(p) is the binary
string output by the computer p when it is given the program p. If q~(p) is
undefined, this means that running the program p on ~p produces an
unending computation with no output.

Definition. The Kolmogorov information in x n relative to the program-
ming language q is

K~(x n) = min{l(p): 3p p (p) = x n }

= co otherwise

Definition. ~ is a universal programming language iff

Vq~3cVs[K~ (s) <- K~ (s) + e]

The existence of universal programming languages is well known
(Rogers, 1967). Such languages 0 have the property that for any program-
ming language ~, there is a constant c (which depends on q~) such that the
shortest programs relative to 0 never exceed the shortest programs relative
to r by more than c, independent of the string s being programmed. Thus

is as succinct a relative description scheme as any. Therefore we define
the Kolmogorov information measure simply as K~. Kolmogorov informa-
tion content is often equivalently referred to as algorithmic information
content, program-size complexity, Kolmogorov complexity, or descriptive
complexity, and inputs (programs) p for which Kq,(p)>-[p [are called
incompressible.

It has also been found useful to study programs which are given, as a
separate input, the length of the desired output, where no charge is made
for the length of this second input.

Definition. The Kolmogorov conditional information in x" is

Ko(x'[n) = min{/(p): 3p~(p, n) = x"}

= co otherwise

The two measures express a slightly different quality of the sequence
x" in assessing its information content. The quantity K~(x") gives the
minimum length of programs for x" which must contain, in addition to the
distribution of l 's and 0's in x", also information concerning the length n.

1148 Cuykendall

The integer n can generally be expected to use about length log2 n of the
binary program p for x n. On the other hand, the quantity K+(x"[n) gives
the minimum length of a program which need not contain information on
the length n, but which only determines the distribution of l ' s and O's in
x n. This distinction is dramatic at the low-information end of the scale
where the information needed to determine the distribution is less than
log2 n.

A more general definition of information conditioned on an arbitrary
amount of a priori information can be formulated as follows:

Definition. The conditional (Kolmogorov) information Ko(s I I) of a
binary sequence s given information I represented as a finite binary sequence
is given by

K~(s I I) = rain{/(p): 3p~O(p, I) -- s}

= oe otherwise

Theorem 1 (Fine, 1975). I f ~-, y, and ~ are recursive functions, y
increasing and 3 such that for some e < 1 each sequence S has a neighbor-
hood 6(S) containing no more than 2 ~lsl sequences, then

(] lo) (V/> Io)(3~(1) ~ Miv(1)/(l_~)l)sC(l)c

where M~ ={S:lSl = n}; txl is the smallest integer>-x; C =
{S: (3P) 4,(P) ~ 8(S), p~,(P) < r(S) , IPI < v[K~ (S)]} is the set of reasonably
compressible source sequences in the sense that P yield a reasonable
approximation S'~ 8(S) to S, that P run in time no longer than r, and that
it is moderately efficient in that for some preassigned function y, [PI < Y[K~],
where K~, is the length of the most efficient possible codeword; 4' is a p.r.
function which can be thought of as any one of countably infinitely many
universal Turing machines using the encoding function E; p~ is the running
time of P on 4' and is defined if[~ halts.

The above result thus shows that there is an infinite sequence
{MI,),(k)ll_el } such that each Mlv(k)ll_el contains at least one sequence ~:(k)
not in C. This conclusion can be extended to other sequences of subsets of
{0, 1}*, but it is not known whether it extends to all sufficiently large M,.
[Based on program-size vs. speedup results (Helm and Young, 1971;
Constable and Hartmanis, 1971; Meyer and Fischer, 1972) for certain
functions f, we conjecture it does extend to all sufficiently large message
sources Mn, but the specification of n would be noneffective.]

3. VLSI C O M P U T A T I O N

There is a close connection between the theory of information trans-
mission over a channel and complexity of computing. The above result can
be extended to binary functions which leads to the following theorem.

Uncontrollable Computational Growth in Theoretical Physics 1149

Definition. Mn ={f : IJ] = n} and C ={f : (3P)~b(P)c 6(f), po(P)<
r (f) , 1PI < ~'[K+ (f)]} is the set of reasonably programmable binary functions
in the sense that there exists a program P which yields an approximation
f ' c 6 (f) to f that P run in time no longer than 7, and that Iel < z , [/ ~ (/) l
for all preassigned recursive .r, 3', and 8, 3' increasing, and 6 such that for
some e < 1 and each binary function g ~ Mn, 6(g) contains no more than
2 ~lgl binary functions.

Theorem 2. There is an infinite sequence of sets M. of binary functions
such that each M. contains at least one function f not in C.

Proof The table of an arbitrary binary function f : ~logn _~ ~m, where
E = {0, 1}, can be regarded as a binary sequence S ~ Mmn for some message
source Mmn by concatenating the n rows of length rn comprising the table.
The encoding E(S) is then a program P for computing f on (universal
Turing machine) q,. By the previous theorem there is an infinite sequence
{ML~(k)/I_~ I} such that each Ml3,(k)/l_~] contains at least one binary function
~ : (k)=f not in C. �9

(The restriction to binary functions in the theorem is clearly
unnecessary, as any finite function of natural numbers into natural numbers
can be transformed into an equivalent function f over E*.)

So far, we have established (by Theorem 2) that uncontrolled (discon-
tinuous) growth in the program length or computation time is unavoidable
when considering finite uniform computations carried out on a sequential
machine. Furthermore, uncontrolled growth is unavoidable in approximat-
ing such computations. The question naturally arises if we cannot somehow
avoid these difficulties through parallelism in computing. That is, could the
bottleneck between memory and cpu in sequential computers cause the
discontinuous jumps in complexity with problem size?

In order to compute a family of functions in which the inputs and
outputs are distributed among a number of processors, information must
in general be transferred between the processors. The role of such internal
communication requirements in contributing to the inherent complexity of
computational problems is still poorly understood. In distributed systems
it can be expensive both in time and hardware to send information between
processors, and in some computations the processors spend significantly
more time waiting for information to be transferred than in performing
actual computation. In VLSI chips the computation is distributed over the
chip, and the various processing elements must communicate via wires.
These wires generally occupy more space than the processors themselves,
and can therefore be a more significant factor in determining cost and
performance (Mead and Rem, 1979).

1150 Cuykendall

The information transfer required in a distributed computation is
defined to be the smallest number I such that, for any values of the inputs,
the computat ion can be accomplished with a total of at most I units of
information transferred between the processors. In general, the information
transfer can be regarded as a measure of the inherent modulari ty of the
function being computed. Finding a configuration for which the inputs or
outputs are evenly distributed, but which requires small information transfer,
is a way of modularizing the computation. I f this is not possible, we say
that the function is inherently amodular. In other words, any partitioning
of the computational process demands highly interacting parts. This (infor-
mation transfer) amodulari ty leads to an area-time tradeoff for VLSI circuits.

The basic model of VLSI computation allows great generality. It allows
features which certainly are not even contemplated in the near future. There
are three main components: the boolean function f which is to be computed,
a synchronous circuit C that computes f, and a VLSI layout V that realizes
C. We assume that C is a network of wires attached to each other and to
gates. The gates of C can be "and," "or ," or "not" gates of arbitrary fan-in
and fan-out. Such a circuit, which may have feedback, computes f provided
there is an input-output schedule that describes how the inputs and outputs
o f f are mapped onto the input and output wires of C. It is assumed that
each input arrives once and each output leaves once. (The motivation for
this is that otherwise we would be allowing the circuit "free" memory.)

Definition (Lipton and Sedgewick, 1981). A VLSI layout V is a
(A, Izl, tz2) layout of the sequential circuit C if there is a map that assigns
to each gate g (wire w) of C a closed connected region of the plane g*
(w*) so that (1) if w is an input or output wire of gate g, then g* intersects
w*; and (2) for each A x A square S of the plane, (a) at most tzl gates g
map to regions g* that intersect S, and (b) at most /~2 wires w map to
regions w* that intersect S.

It is further assumed that all of the g* and w* lie in a convex region
R, the region of the layout. The layout area A for a function f is defined
as the area of the smallest region R containing a VLSI layout V of a network
C that computes f in time T. No assumption is made about the location
of circuit inputs or outputs or how they are assigned to gates, but we do
require that circuits use all their inputs. Condition (1) simply forces electrical
connections to map to topological connections (the converse is not true
because multiple layers are allowed). Condition (2) is a direct result of the
limits of VLSI fabrication. It ensures that any such S (e.g., a transistor) can
only "see" a fixed number of gates and wires, and therefore limits the
number of layers that can be used at the same point to tz~ + ~2-

Uncontrollable Computational Growth in Theoretical Physics 1151

Theorem 3. There is an infinite sequence of sets M, of binary functions
such that each M, contains at least one functionf which cannot be computed
or approximated within 6(f) by any VLSI circuit in less than AT 2
(equivalently A2T) > l)[h(f)] or AT 2 (equivalently A2T) > l)[h(K+)], for
all recursive h, and recursive ~ such that for some e < 1 and each binary
function g c M,, 8(g) contains no more than 2 dgl binary functions.

Proof By Theorem 2 we know there exists at least one f not in C for
each M,. Thus either f violates the allowed running time r on ~O, or it
violates the allowed program-size bound 7[K~] f o r f on ~. If r is exceeded
for any recursive z, then since a r(n) time bounded Turing machine simu-
lated on n bits by a boolean circuit requires O[r(n)log r(n)] gates
(Pippenger and Fischer, 1979; Schnorr, 1976) and any planar circuit requires
at least this number of gates, the result follows (Lipton and Sedgewick,
1981; Savage, 1981) with h = [r log r]. If on the other hand y is exceeded
so that any program for f takes more than y[K,(f)] tape squares to read
into storage (for example, on an off-line machine with a two-way read only
input tape), more than y[K~(f)] time steps on ~ are required just to read
the input tape. This leads to precisely the same argument as before, and
thus the result is established. Note that the entire input tape must be read
in the computation off, since by Theorem 2 the necessary length [PI of any
program for f exceeds 7[K, (f)] if running time is to remain less than ~-(f),
and any lesser input in computingf will violate r. I fa model of computation
is assumed whereby the input is already on a working tape, either the above
argument or one relating Turing machine space polynomially to planar
circuit depth (Borodin, 1977) leads to the stated result. (A result requiring
the layout area A of any VLSI circuit performing binary multiplication be
proportional to the total number of bits input to the chip appears in the
literature (Brent and Kung, 1980), and is extended (Baudet, 1981) to
functions corresponding roughly to shifting or transitive operations which
depend on all their inputs.) []

The connection pointed out earlier between on-chip information flow
and inherent modularity of functions ignores the problem of input, and
instead assumes each processor already has its roughly equally divided
share of inputs in memory. Given enough input, no interaction among the
processors would in theory be required, regardless of the function being
computed. Account for program length must therefore be taken in defining
the concept of modularity. Intuitively, we think of a computation being
modular if the total time it takes can be arbitrarily reduced by partitioning
among a large enough number of processors. Total time in practice obviously
includes the time required to transfer program bits into the various processor
memories. Thus modularity relates to all processor interactions, not just to

1152 Cuykendall

on-chip flows. Using this global notion of processor interaction in measuring
inherent modularity of computations, we can show that finite functions
abound that are highly amodular. Moreover, such functions cannot be
reasonably approximated by modular functions.

Definition. If a function (computation) f requires a program
inefficiency (redundancy) 3', i.e.,

IPI-- T[Kq,(f)]

for f to run within time z(IP[) on ~, then f has amodularity degree
h--max(T, r), the greater growth rate. If h is polynomial or less, f is
modular. Otherwise f is amodular.

Theorem 4 (Hierarchy theorem). There is an infinite sequence of finite
functions f of arbitrarily increasing degree of amodularity which cannot be
approximated to within reasonable ~ (f) by functions f ' having an amodular-
ity degree lower in the sequence.

Proof. Theorem 2 establishes the existence of infinite sequences of
finite functions that take longer than r time to compute on qJ, or require
input longer than T(K~). Such sequences exist for each pair (z, 3'), where
z is recursive and 3' is recursive increasing. If tp satisfies r, then the input
violates 7. The polynomial relation between Turing machine space and
circuit depth (Borodin, 1977) thus requires chip interaction> 7(K~) to
within a polynomial factor. The degree of amodularity therefore grows as
3/if z is small. If on the other hand the input satisfies 3', then ~ violates z.
For complexity bounds ~(log n) on input of length n, it is well known
(Dymond and Cook, 1980) that sequential space and reversal are both
~(log ~-), and that reversal is polynomially related to aggregate depth
(parallel time on combinational circuits which can reuse their gates). Thus
either the space-circuit depth or reversal-aggregate depth relation requires
chip interaction > log z within a polynomial factor. For the pair (% 3') we
then have at least one (actually many) infinite sequence of functions f
having degree of amodularity greater than 3/or log z (to within a polynomial
factor). By successively choosing faster growing z and T we obtain infinite
sequences of functions with arbitrarily increasing degrees of amodularity.
As ~ is required to compute (in Theorem 2) only an approximation f ' to
f, subject to constraints on the reasonableness of the approximation, we
can replace each f by any f ' within the 8 neighborhood obtaining f '
sequences instead o f f sequences. Clearly f ' has the same degree of amodu-
larity as f, since the running time for any such f ' approximating f exceeds
~" or tp requires more than T(K~,) bits to executef', completing the proof. �9

Actually, the situation may be much worse. Theorem 4 establishes only
the sparse existence of functions which are increasingly amodular, namely

Uncontrollable Computational Growth in Theoretical Physics 1153

one such f for approximately each y(n) with n-> no. Thus the distance
between s and s can be very large, and in fact becomes arbitrarily
large with ever increasing y. The high-density existence of such functions,
say one for each y(no)+ k, k = 0, 1 , . . . would seem to have serious implica-
tions for very large-scale computations, e.g., solving weather prediction
equations on large uniform data sets. The next two results provide conditions
for a high-density hierarchy theorem.

Corollary 1. I f all sufficiently large Mn contain at least one function f
not in C, then every (reasonably accurate) computation allowing arbitrary
inputs over s is inherently amodular.

Proof I f the conclusion of Theorem 2 extends to all sufficiently large
M,, then by the above proof 3 no such that there is at least one f satisfying
Theorem 4 for each integer n -> no. A computat ion which allows all inputs
over s includes such a n f as a partial computation if n -> no, and is therefore
itself amodular even when only approximated to within 6. �9

There is strong evidence that the condition of Corollary 1 holds. Note
that Theorem 2 implies that in order to stay within any given recursive
running time bound r, the program P for computing some f in Mn must
grow more rapidly as a function of K+(f) than any computable y. And
since (Fine, 1975) K~(f')>y(lo), where n is the smallest integer_>
y(lo)/1- e,]P] must grow faster than any computable function of n. Now
as we decrease r, the function f begins to look like a function that has an
almost everywhere (a.e.) speedup at the expense of an ever larger program.
Moreover, the faster program cannot be effectively determined from the
given program, nor can we effectively compute from which point on the
speedup started.

Definition. Let q~i be the ith partial recursive function of one variable
in a standard Godel numbering (Rogers, 1967) of p.r. functions. A family
qbo, ~1, �9 �9 �9 of functions of one variable is called a Blum measure (Blum,
1967) on computat ion providing (1) domain (~ i)= domain (~i) , and (2)
the predicate [qbi(x) = m] is recursive in i, x, and m.

Definition. A p.r. function ~ is speedable if for all i such that ~oi =
and for all recursive functions h there exists j such that ~j = q~, and

[qb,(x) > h(x, ~j (x))] a.e.

Furthermore, q~ is effectively speedable if j can be recursively computed
from i and an index for h.

Intuitively, if ~ is speedable then for every program i for computing
q~ and every recursive function h there is another program j for q~ which
is an h speedup of the first on all but a finite number of inputs x, where j

1154 Cuykendall

is an h speedup of i on argument x if

r > h(x, ~,j(x))

The question whether for a function f with h speedup there must exist
a recursive function which bounds the size of program necessary to effect
the speedup was originally posed by Blum (Blum, 1971). A negative answer
for effective operators slightly larger than h appears in the literature (Helm
and Young, 1971), where it is shown that functions f exist which have the
property that if we are given any program P for computing the function
and want to pass to a program P' which computes the function much more
efficiently, then we can only do so at the expense of obtaining a much larger
program. In fact, the function which describes the necessary increase in the
size of the more efficient program P' must grow more rapidly than any
recursive function. The functions f have speedup, but not only can one not
effectively find the programs P' which admit the speedup, even if one could,
their complexity must increase in such a way that their size becomes totally
uncontrolled. It is thus evident that the speedup property is related to
Theorem 2 in the sense that certain speedable functions exhibit the discon-
tinuous trade between their program-size and computation time predicted
by the theorem. That the programs for such functions are noneffective is
of course already implied by Theorem 2.

Such behavior is shown to arise for certain operator speedups R(rj)-
(n)<~ i (n) a.e. (ordinary speedups by recursive functions h(n, r j (n)) <
ri(n) a.e. are a restricted form of operator) and is conjectured to hold for
all sufficiently large operators on the basis that it should be more difficult
to bound the size of programs effecting large speedups than those bounding
smaller speedups. A slightly stronger result appears (Constable and
Hartmanis, 1971; Meyer and Fischer, 1972), the question of extension to all
total effective operators R remaining open.

Theorem 5. If the Helm-Young (1971) theorem extends to all
sufficiently large operators R, then Theorem 2 extends to all sufficiently
large M,.

Proof Helm-Young prove that for every recursive function h there is
an effective operator R only slightly larger than h, and a total recursive
function f which has R speedup

R(~))(n)< ~'i(n)

but for which the size of the program necessary to effect the speedup
increases more rapidly than any recursive bound. If their result holds for

Uncontrollable Computational Growth in Theoretical Physics 1155

any operator R sufficiently large that

R('r)(n)>-h(n+ l)

then f requires such programs for all running times ~--< ~.. If the size of a
program necessary to effect an R speedup cannot be effectively bounded
for some R-speedable f ~ Mno~, then Vy:qno such that its initial segments
f . of length n - no require programs P. of size [P.[>y [K~(f .)] , where ~O
computes f therefore f . within time z~(n), and Theorem 2 holds for all
r -> z~ and all sufficiently large M.. If this behavior arises for all sufficiently
large R, then Theorem 2 holds additionally for all T_< ~3 and sufficiently
large M.. ID

4. DISCUSSION

In view of the fact that most simple (noncomposite) functions already
have been shown to have time-efficient layouts only when wire area is nearly
as large as the chip, it would not have been completely unexpected to find
that running time (or VLSI circuit area) for arbitrary composite functions
would exceed polynomial or simple exponential limits. For example, it is
shown (Lipton and Sedgewick, 1981) that certain n-input functions which
are easy to compute become difficult under union or composition if each
input arrives once and each output leaves once. If inputs are allowed to
arrive multiple times (i.e., at many different times during the computation),
this result does not hold, but if we do not allow free boundary (off chip)
memory, the on-chip storage area will correspondingly increase. However,
the probable abundance of well-defined functions which exceed any recur-
sive bound on the area-time product is unexpected.

Blum (1971) gave an axiomatic characterization of some of the proper-
ties which should be possessed by a measure of computational complexity
and established the existence of speedable functions--computable functions
which fail to possess optimal programs in a particularly strong sense.
Recursion theorists tend to like such functions, and computer scientists
tend to consider such functions somewhat pathological. It is shown (Alton,
1976) that such pathology is rampant: there is a great diversity of behavior
among the collections of run times of different functions which do not
possess optimal programs, where such diversity is gauged by certain alge-
braic criteria which have computational significance. Roughly speaking,
these algebraic criteria concern the ways in which various functions can be
intermixed to satisfy requirements that certain functions can or cannot be
computed more easily than certain other functions.

It is in fact shown (Alton, 1976) that there are enough speedable
functions so that they can be responsible for embedding every countable

1156 Cuykendall

par t ia l o rde r into the set o f all poss ib le complex i ty classes with respec t to
an a rb i t ra ry measure (such as t ime). Such divers i ty thus inc ludes all count-
able sets o f i n c o m p a r a b l e complex i ty classes. Suppose , for instance, tha t
c o m p u t a b l e funct ions f = q~i and g = ~ j are respons ib le for making the
complex i ty classes Cr and C% se t - theore t ica l ly i ncomparab l e . This means
that any p r o g r a m which computes f takes more resource on inf ini tely many
inputs than the pa r t i cu l a r p rog ram j which computes g, and any p r o g r a m
which computes g takes more resource on infini tely many inputs than the
par t i c la r p r o g r a m i which computes f Thus f and g are easy to compu te
on very different sets o f inputs . We therefore see that there are enough
speedab le funct ions to mode l (encode b y indexing) the ways in which
var ious p r o g r a m s relate to one ano ther with respect to the pa t te rns of inputs
on which those p rog rams compu te rapid ly . The preva lence (d i s t r ibu t ion)
o f uncon t ro l l ed p r o g r a m growth among these funct ions is unknown.

REFERENCES

Alton, D. A. (1976). Diversity of speed-ups and embeddability in computational complexity,
Journal of Symbolic Logic, 41(1), 199-214.

Baudet, G. (1981). On the area required by VLSI circuits, in CMU Conference on VLSI Systems
and Computations, Computer Science Press, Rockville, Maryland, p. 100.

Blum, M. (1967). A machine independent theory of the complexity of recursive functions,
Journal of the Association for Computing Machinery, 14, 322-336.

Blum, M. (1971). On effective procedures for speeding up algorithms, Journal of the Association
for Computing Machinery, 18(2), 290-305.

Borodin, A. (1977). On relating time and space to size and depth, SIAM Journal on Computing,
6(4), 733.

Brent, R. P., and Kung, H. T. (1980). The chip complexity of binary arithmetic, in the 12th
Annual A C M Symposium on Theory of Computing, pp. 90-120.

Chaitin, G. (1975). A theory of program size formally identical to information theory, Journal
of the Association for Computing Machinery, 22, 329-340.

Constable, R., and Hartmanis, J. (1971). Complexity of formal translations and speedup
results, in Proceedings of the 3rd Annual ACM Symposium, pp. 244-250.

Dymond, P. E., and Cook, S. A. (1980). Hardware complexity and parallel computation, in
the IEEE FOCS Conference, pp. 360-372.

Feynman, R. P. (1982). Simulating physics with computers, International Journal of Theoretical
Physics, 21, 467.

Fine, T. (1975). Uniformly reasonable source encoding is often practically impossible, IEEE
Transactions on Information Theory, 1'1"-21(4), 368.

Helm, J., and Young, P. (1971). On size vs efficiency for programs admitting speed-ups,
Journal of Symbolic Logic, 36(1), 21-27.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information,
Problemy Peradachi Informatsii, 1(1), 3. (In Russian.)

Kolmogorov, A. (1968). Logical basis for information theory and probability theory, IEEE
Transactions on Information Theory IT-14, 662-664.

Lipton, R. J., and Sedgewick, R. (1981). Lower bounds for VLSI, in Proceedings of the 13th
Annual A C M Symposium on Theory of Computing, pp. 300-307.

Uncontrollable Computational Growth in Theoretical Physics 1157

Mead, C. A., and Rem, M. (1979). Cost and performance of VLSI computing structures, IEEE,
Journal of Solid-State Circuits, 14, 455-462.

Meyer, A., and Fischer, P. (1972). Computational speeduP by effective operators, Journal of
Symbolic Logic, 37(1), 55-68.

Pippenger, N., and Fischer, M. J. (1979). Relations among complexity measures, Journal of
the Association for Computing Machinery, 26(2), 361-381.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability, McGraw-Hill,
New York.

Savage, J. E. (1981). Planar circuit complexity and the performance of VLSI algorithms, in
CMU Conference on VLSI Systems and Computations, Computer Science Press, Rockville,
Maryland, pp. 61-68.

Schnorr, C. P. (1976). The network complexity and the Turing machine complexity of finite
functions, Acta lnformatica, 7, 95-107.

Wolfram, S. (1985). Undecidability and intractability in theoretical physics, Physical Review
Letters, 54, 735.

